Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices.

نویسندگان

  • Edward A Botchwey
  • Melissa A Dupree
  • Solomon R Pollack
  • Elliot M Levine
  • Cato T Laurencin
چکیده

The classic paradigm for in vitro tissue engineering of bone involves the isolation and culture of donor osteoblasts or osteoprogenitor cells within three-dimensional (3D) scaffold biomaterials under conditions that support tissue growth and mineralized osteoid formation. Our studies focus on the development and utilization of new dynamic culture technologies to provide adequate nutrient flux within 3D scaffolds to support ongoing tissue formation. In this study, we have developed a basic one-dimensional (1D) model to characterize the efficiency of passive nutrient diffusion and transport flux to bone cells within 3D scaffolds under static and dynamic culture conditions. Internal fluid perfusion within modeled scaffolds increased rapidly with increasing pore volume and pore diameter to a maximum of approximately 1% of external fluid flow. In contrast, internal perfusion decreased significantly with increasing pore channel tortuosity. Calculations of associated nutrient flux indicate that static 3D culture and some inappropriately designed dynamic culture environments lead to regions of insufficient nutrient concentration to maintain cell viability, and can result in steep nutrient concentration gradients within the modeled constructs. These quantitative studies provide a basis for development of new dynamic culture methodologies to overcome the limitations of passive nutrient diffusion in 3D cell-scaffold composite systems proposed for in vitro tissue engineering of bone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue Engineered Scaffolds in Regenerative Medicine

Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...

متن کامل

Bioreactor systems for bone tissue engineering.

Bone graft material is often required for the treatment of osseous defects. However, due to limitations and risks associated with autologous as well as allogenic bone grafting procedures, alternative strategies are needed. In this context, ex vivo tissue engineering (TE) strategies for de novo generation of bone tissue include the combined use of autologous bone-forming cells and three-dimensio...

متن کامل

Fabrication of three-dimensional tissues.

The goal of tissue engineering is to restore or replace the lost functions of diseased or damaged organs. Ideally, engineered tissues should provide nutrient transport, mechanical stability, coordination of multicellular processes, and a cellular microenvironment that promotes phenotypic stability. To achieve this goal, many engineered tissues require both macro- (approximately cm) and micro- (...

متن کامل

A Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration

Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...

متن کامل

Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro.

Cellular activity at the center of tissue-engineered constructs in static culture is typically decreased relative to the construct periphery because of transport limitations. We have designed a tissue culture system that perfuses culture medium through three-dimensional (3D) porous cellular constructs to improve nutrient delivery and waste removal within the constructs. This study examined the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 2003